################################################################################# from pathlib import Path import os import sys from astropy.stats import mad_std from astropy.io import fits from astropy.utils.data import get_pkg_data_filename import glob, os from astropy import stats import matplotlib.pyplot as plt import numpy as np from datetime import date today = date.today() from astropy.convolution import convolve, Box1DKernel from astropy.convolution import Box2DKernel date = today.strftime("%b-%d-%Y") from astropy.wcs import WCS import warnings warnings.filterwarnings('ignore') from matplotlib.backends.backend_pdf import PdfPages import shutil ################################################################################# # Read in day number from command line: n = len(sys.argv) if n == 0 or n == 1 or n > 3: print('Usage: python process_movie.py ### $$$' ) print(' where ### is a 3-digit identifier for the day number') print(' and $$$ is an (optional) 3-digit identifier for the observer code') # end program: sys.exit(0) if n == 2: daynum = sys.argv[1] obscode = '*' if n == 3: daynum = sys.argv[1] obscode = sys.argv[2] ################################################################################# # Use glob to create list: current_dir = os.getcwd() if obscode == '*': image_dir = '/home/cannon/mew050/' if obscode != '*': image_dir = '/home/cannon/mew050/' out_dir = current_dir+'/' #os.makedirs(out_dir, exist_ok = True) image_list = sorted(glob.glob(image_dir+'*.fits',recursive=True)) N_images = len(image_list) print('-----------------------------------------------------------') if obscode == '*': print(' --> '+str(N_images)+' images found for day '+str(daynum)+' from all observers') if obscode != '*': print(' --> '+str(N_images)+' images found for day '+str(daynum)+' from observer '+str(obscode)) print('-----------------------------------------------------------') ################################################################################# ################################################################################# # Create two-page PDF with plots vs. time: templist = [] timelist = [] amblist=[] sinklist=[] explist = [] ratio=[] wndlist=[] azimlist=[] elevlist=[] halist=[] for ii in range(0, N_images): hd = fits.getheader(image_list[ii]) elev = hd['ELEVATIO'] azim = hd['AZIMUTH'] ha = hd['HA'] azimdeg = float(str.split(azim,':')[0]) + float(str.split(azim,':')[1])/60. + float(str.split(azim,':')[2])/3600. elevdeg = float(str.split(elev,':')[0]) + float(str.split(elev,':')[1])/60. + float(str.split(elev,':')[2])/3600. if str.split(ha,':')[0][0] == '-' or str.split(ha,':')[0][1] == '-': hahours = -float(str.split(ha,':')[0]) + float(str.split(ha,':')[1])/60. + float(str.split(ha,':')[2])/3600. hahoursval=-hahours if str.split(ha,':')[0][0] != '-': hahours = float(str.split(ha,':')[0]) + float(str.split(ha,':')[1])/60. + float(str.split(ha,':')[2])/3600. hahoursval = hahours exptime = hd['EXPTIME'] logexptime= np.log(exptime)/np.log(2) DATE=str.split(hd['DATE-OBS'],'T') day = DATE[0] hour = float(str.split(DATE[1],':')[0]) minute = float(str.split(DATE[1],':')[1]) second = float(str.split(DATE[1],':')[2]) time=hour + (minute/60.) + (second/3600.) temp=hd['CCD-TEMP'] hsink=hd['HSINKT'] ambient=hd['WXTEMP'] windspd=hd['WXWNDSPD'] timelist.append(time) templist.append(temp) explist.append(logexptime) amblist.append(ambient) sinklist.append(hsink) ratio.append(ambient/hsink) wndlist.append(windspd) elevlist.append(elevdeg) azimlist.append(azimdeg) halist.append(hahoursval) with PdfPages(out_dir+str(daynum)+'.plots.wcs.pdf') as pdf: fig = plt.figure(figsize=(9,12)) fig.subplots_adjust(hspace=0) ax1 = plt.subplot(411) plt.title("RLMT "+str(DATE[0]),fontsize = 16) plt.scatter(timelist, templist, s=12, color='navy', label=r'CCD Temp ($^{\rm o}$C)') plt.axhline(y = -20.0, color = 'r', linestyle = '-', linewidth = 1) plt.grid(color = 'grey', linestyle = '--', linewidth = 0.5) plt.tick_params('x', labelbottom=False) plt.legend(facecolor='gainsboro',fontsize = 12) plt.ylabel(r"Temp ($^{\rm o}$C)",fontsize = 16) ax2 = plt.subplot(412, sharex=ax1) plt.grid(color = 'grey', linestyle = '--', linewidth = 0.5) plt.scatter(timelist, sinklist, s=12, color='saddlebrown', label=r'Heatsink Temp ($^{\rm o}$C)') plt.legend(facecolor='gainsboro',fontsize = 12) plt.ylabel(r"Temp ($^{\rm o}$C)",fontsize = 16) ax3 = plt.subplot(413, sharex=ax1) plt.scatter(timelist, amblist, s=12, color='darkcyan', label=r'Ambient Temp ($^{\rm o}$C)') plt.tick_params('x') plt.tick_params('y') plt.grid(color = 'grey', linestyle = '--', linewidth = 0.5) plt.legend(facecolor='gainsboro',fontsize = 12) plt.xlabel("Time (UT hours)",fontsize = 16) plt.ylabel(r"Temp ($^{\rm o}$C)",fontsize = 16) ax4 = plt.subplot(414, sharex=ax1) plt.scatter(timelist, wndlist, s=12, color='tomato', label=r'Wind Speed (kph)') plt.tick_params('x') plt.tick_params('y') plt.grid(color = 'grey', linestyle = '--', linewidth = 0.5) plt.legend(facecolor='gainsboro',fontsize = 12) plt.xlabel("Time (UT hours)",fontsize = 16) plt.ylabel(r"Wind Speed (kph)",fontsize = 16) pdf.savefig(dpi=100) plt.close() fig = plt.figure(figsize=(9,12)) fig.subplots_adjust(hspace=0) ax1 = plt.subplot(411) plt.title("RLMT "+str(DATE[0]),fontsize = 16) plt.scatter(timelist, halist, s=12, color='navy', label=r'Hour Angle (hours)') plt.grid(color = 'grey', linestyle = '--', linewidth = 0.5) plt.tick_params('x', labelbottom=False) plt.legend(facecolor='gainsboro',fontsize = 12) plt.ylabel(r"Hour Angle (hours)",fontsize = 16) ax2 = plt.subplot(412, sharex=ax1) plt.grid(color = 'grey', linestyle = '--', linewidth = 0.5) plt.scatter(timelist, azimlist, s=12, color='saddlebrown', label=r'Telescope Azimuth ($^{\rm o}$)') plt.legend(facecolor='gainsboro',fontsize = 12) plt.ylabel(r"Azimuth ($^{\rm o}$)",fontsize = 16) ax3 = plt.subplot(413, sharex=ax1) plt.scatter(timelist, elevlist, s=12, color='darkcyan', label=r'Source Elevation ($^{\rm o}$)') plt.tick_params('x') plt.tick_params('y') plt.grid(color = 'grey', linestyle = '--', linewidth = 0.5) plt.legend(facecolor='gainsboro',fontsize = 12) plt.xlabel("Time (UT hours)",fontsize = 16) plt.ylabel(r"Elevation ($^{\rm o}$)",fontsize = 16) ax4 = plt.subplot(414, sharex=ax1) plt.scatter(timelist, wndlist, s=12, color='tomato', label=r'Wind Speed (kph)') plt.tick_params('x') plt.tick_params('y') plt.grid(color = 'grey', linestyle = '--', linewidth = 0.5) plt.legend(facecolor='gainsboro',fontsize = 12) plt.xlabel("Time (UT hours)",fontsize = 16) plt.ylabel(r"Wind Speed (kph)",fontsize = 16) pdf.savefig(dpi=100) plt.close() ################################################################################# ################################################################################# # Sort the list by time: astlist = [x for _,x in sorted(zip(timelist,image_list))] ################################################################################# #%matplotlib inline #daynum = str.split(str.split(astlist[i],'/')[-1],'.')[0][3:6] print('Processing '+str(N_images)+' images from day number '+str(daynum)) with PdfPages(out_dir+str(daynum)+'.images.wcs.pdf') as pdf: #for i in range(0,4): for i in range(len(image_list)): name = str.split(str.split(astlist[i],'/')[-1],'.')[0] with fits.open(str(astlist[i])) as hdul: im = hdul[0].data hd = hdul[0].header wcs=WCS(hd) if hd['FILTER'] != 6: minval = np.mean(im)-np.std(im)*0.5 maxval = np.mean(im)+np.std(im)*0.75 meanval=np.mean(im) stdval=np.std(im) if hd['FILTER'] == 6: minval = np.mean(im)-np.std(im)*0.125 maxval = 3000. meanval=np.mean(im) stdval=np.std(im) elev = hd['ELEVATIO'] azim = hd['AZIMUTH'] ha = hd['HA'] azimdeg = float(str.split(azim,':')[0]) + float(str.split(azim,':')[1])/60. + float(str.split(azim,':')[2])/3600. elevdeg = float(str.split(elev,':')[0]) + float(str.split(elev,':')[1])/60. + float(str.split(elev,':')[2])/3600. fig = plt.figure(figsize=(4,4)) ax1 = fig.add_subplot(projection=wcs) ax1.set_ylim #im0 = ax1.imshow(im[2500:4095,2500:4095],vmin=minval,vmax=maxval,cmap='cividis') im0 = ax1.imshow(im,vmin=minval,vmax=maxval,cmap='cividis') #ax1.annotate(str(name)+' ('+str(hd['OBJECT'])+', '+str(hd['FILTER'])+ ' filter)', xy=(100,725), fontsize=7, color='white') ax1.annotate('Peak pixel = '+str(round(np.max(im),2)),xy=(850,1375), fontsize=8, color='white') if hd['READOUTM'] == 'High Gain StackPro' and np.max(im)>(0.66*65536): ax1.annotate('Saturated',xy=(850,1315), fontsize=8, color='white') if hd['READOUTM'] == 'High Gain' and np.max(im)>(0.66*4096): ax1.annotate('Saturated',xy=(850,1315), fontsize=8, color='white') ax1.annotate('UTC '+str.split(hd['DATE-OBS'],'T')[0]+' '+str.split(hd['DATE-OBS'],'T')[1],xy=(35,675), fontsize=7, color='white') ax1.annotate(r'Mean='+str("{:.2f}".format(meanval))+', $\sigma$='+str("{:.2f}".format(stdval)), xy=(35,625), fontsize=7, color='white') ax1.annotate(r'Mean='+str("{:.2f}".format(meanval))+', $\sigma$='+str("{:.2f}".format(stdval)), xy=(35,575), fontsize=7, color='white') ax1.annotate(r'$\sigma$='+str("{:.2f}".format(stdval)), xy=(35,525), fontsize=7, color='white') ax1.annotate(r'Exposure Time ='+str(round(hd['EXPTIME'],3))+' s', xy=(35,475), fontsize=7, color='white') ax1.annotate(hd['READOUTM'],xy=(35,425), fontsize=7, color='white') ax1.annotate(r'min=mean-0.5$\sigma$='+str(round(minval,2)),xy=(35,375), fontsize=7, color='white') ax1.annotate(r'max=mean+0.75$\sigma$='+str(round(maxval,2)),xy=(35,325), fontsize=7, color='white') ax1.annotate(r'Moon angle ='+str(round(hd['MOONANGL'],2))+'$^{\circ}$',xy=(35,275), fontsize=7, color='white') ax1.annotate(r'Moon phase ='+str(round(hd['MOONPHAS'],2))+'%',xy=(35,225), fontsize=7, color='white') ax1.annotate(r'Azim.='+str(round(azimdeg,2))+'$^{\circ}$, '+'Elev.='+str(round(elevdeg,2))+'$^{\circ}$',xy=(35,175), fontsize=7, color='white') ax1.annotate(r'Hour Angle ='+str(ha)+'$^{\circ}$',xy=(35,125), fontsize=7, color='white') ax1.annotate(r'Wind speed ='+str(round(hd['WXWNDSPD'],2))+' km/hr = '+str(round((hd['WXWNDSPD']/1.609344),2))+' miles/hr',xy=(35,75), fontsize=7, color='white') ax1.annotate(r'Wind Direction ='+str(round(hd['WXWNDDIR'],2))+'$^{\circ}$ E of N',xy=(35,25), fontsize=7, color='white') ax1.coords[0].set_auto_axislabel(False) ax1.coords[1].set_auto_axislabel(False) plt.xlabel("Right Ascension (J2000)",fontsize = 10) plt.ylabel("Declination (J2000)",fontsize = 10) plt.title(str.split(name,'_')[0]+' ('+str(hd['FILTER'])+ ' filter)') plt.tight_layout() pdf.savefig(dpi=100) plt.close() print('Image #'+str(i+1)+' processed, '+str(round(100.*((i+1)/len(astlist)),1))+'% complete') if obscode == '*': print('File '+out_dir+str(daynum)+'.images.wcs.pdf successfully created') if obscode != '*': shutil.move(out_dir+str(daynum)+'.images.wcs.pdf',out_dir+str(daynum)+'.'+str(obscode)+'.images.wcs.pdf') print('File '+out_dir+str(daynum)+'.'+str(obscode)+'.images.wcs.pdf successfully created') #plt.close()